Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Dental press j. orthod. (Impr.) ; 27(1): e222079, 2022. tab, graf
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1375247

ABSTRACT

ABSTRACT Objective: To determine the discrepancy of crown-root morphology of anterior teeth, using cone-beam computed tomography (CBCT), and to provide a guidance for proper torque expression. Methods: A total of eligible 200 CBCT were imported into Invivo v. 5.4 software, to obtain the middle labio-lingual sections of anterior teeth. AutoCAD 2007 software was applied to measure the crown-root angulation (Collum angle) and the angle formed by a tangent to the center of the labial surface and the long axis of the crown (labial surface angle). SPSS 18.0 was used for statistical comparisons of the two measurements, at the level of p< 0.05, and the Pearson correlation analysis was applied to investigate the association between the two measurements. Results: The value of Collum angle in maxillary central incisor was close to 0°. Significantly negative Collum angle in lateral incisors and maxillary canine, and positive value in mandibular canine were detected (p < 0.001). The labial surface angle in canine was significantly greater than the intra-arch incisors (p< 0.001), and no significant difference was detected between the central and lateral incisors (p > 0.05). Notably, there was also a significant positive correlation between the two measurements. Conclusions: The crown-root angulations were greatly different among anterior teeth. Accompanying the obvious crown-root angulations, the canines both in maxillary and mandibular arches presented considerable labial surface curvatures. Hence, equivalent deviation during bracket bonding might cause greater torque expression error and increase the risk of alveolar fenestration and dehiscence.


RESUMO Objetivo: Determinar a discrepância na morfologia coroa-raiz de dentes anteriores, utilizando tomografia computadorizada de feixe cônico (TCFC), e fornecer parâmetros para a expressão apropriada do torque. Método: No total, 200 tomografias elegíveis foram importadas para o software Invivo 5.4 para obtenção das secções médias vestibulolinguais dos dentes anteriores. Osoftware AutoCAD 2007 foi usado para medir a angulação coroa-raiz (ângulo Collum) e o ângulo formado por uma tangente ao centro da superfície vestibular da coroa e o longo eixo da coroa (ângulo da superfície vestibular). O software SPSS 18.0 foi utilizado para as comparações estatísticas das duas medições, com nível de significância de p< 0,05, e a análise de correlação de Pearson foi aplicada para investigar a associação entre as duas medições. Resultados: O valor do ângulo Collum do incisivo central superior foi próximo a 0°. Foram detectados valores significativamente negativos para o ângulo Collum nos incisivos laterais e caninos superiores, mas valores positivos nos caninos inferiores (p< 0,001). O ângulo da superfície vestibular no canino foi significativamente maior do que nos incisivos intra-arcada (p< 0,001), e nenhuma diferença significativa foi detectada entre incisivos centrais e laterais (p> 0,05). Também foi observada uma correlação positiva significativa entre as duas medições. Conclusões: As angulações coroa-raiz foram muito diferentes entre os dentes anteriores. Os caninos superiores e inferiores apresentaram considerável curvatura na superfície vestibular, associada a uma evidente angulação coroa-raiz. Consequentemente, desvios durante a colagem de braquetes podem desencadear maior erro na expressão de torque e aumentar o risco de fenestração alveolar e deiscência, sendo necessária uma avaliação antes da colagem.

2.
Chinese Journal of Preventive Medicine ; (12): 427-432, 2022.
Article in Chinese | WPRIM | ID: wpr-935303

ABSTRACT

Objective: To identify and analyze two strains of C. diphtheriae in Guangdong Province by combining whole genome sequencing with traditional detection methods. Methods: The C. diphtheriae was isolated from Guangzhou in 2010 and Zhuhai in 2020 respectively. Isolates were identified by API Coryne strips and MALDI-TOF-MS. Genomic DNA was sequenced by using Illumina. The assembly was performed for each strain using CLC software. J Species WS online tool was used for average nucleoside homology identification, then narKGHIJ and tox gene were detected by NCBI online analysis tool BLSATN. MEGA-X was used to build a wgSNP phylogenetic tree. Results: GD-Guangzhou-2010 was Belfanti and GD-Zuhai-2020 was Gravis. ANIb between GD-Guangzhou-2010 and C. belfantii was 99.61%. ANI between GD-Zhuhai-2020 and C. diphtheriae was 97.64%. BLASTN results showed that the nitrate reduction gene narKGHIJ and tox gene of GD-Guangzhou-2010 was negative, while GD-Zhuhai-2020 nitrate reduction gene narKGHIJ was positive. There were two obvious clades in wgSNP phylogenetic tree. The first clades included all Mitis and Gravis types strains as well as GD-Zhuhai-2020. The second clades contained all isolates of C.belfantii, C.diphtheriae subsp. lausannense and GD-guangzhou-2010. Conclusion: Two non-toxic C. diphtheriae strains are successfully isolated and identified. The phylogenetic tree suggests that GD-Guangzhou-2010 and GD-Zhuhai-2020 are located in two different evolutionary branches.


Subject(s)
Humans , China/epidemiology , Corynebacterium , Corynebacterium diphtheriae/genetics , Diphtheria/microbiology , Nitrates , Phylogeny
3.
Chinese Journal of Virology ; (6): 117-121, 2011.
Article in Chinese | WPRIM | ID: wpr-286067

ABSTRACT

To understand the HA1 genetic variation characterization of influenza H3N2 virus isolates in Zhu-hai during 2008-2009, we selected 20 of H3N2 Influenza strains cultured in MDCK cell. Viral RNAs were extracted and amplified by using RT-PCR. The amplified products were purified after identified by gel electrophoresis and then the nucleotide sequences of the amplicons were determined. The results were analyzed by the software ClustalX and MEGA4. 1. When compared with the amino acid sequences of the epitopes of HA1 district of H3N2 influenza vaccine recommended by WHO in 2008, changes were found in those of H3N2 influenza strains in Zhuhai in 2008: K140I in all of H3N2 influenza strains, L157S in 08-0343 and 08-0677, K158R in 08-0466, 08-0620 and 08-0667, K173E in 08-0466 and 08-0620, K173N in 08-0667, and I192T in 08-0667. The epitopes of HA1 district of H3N2 influenza strains in Zhuhai in 2009 are different from that of H3N2 influenza vaccine during the same time: K173Q and P194L occur in all of H3N2 influenza strains, N144K, K158N, and N189K occur in the strains except the strain 09-0056. HA1 domain of H3N2 influenza strains in 2009 has lost a glycosylation site at amino acid position 144 while the glycosylation sites of HA1 domain of H3N2 influenza stains isolated in 2008 remained. This study suggested that H3N2 influenza virus in Zhuhai in 2008 was not evolved a novel variant and H3N2 influenza variant in 2009 was attributed to antigenic drift in HA1 district.


Subject(s)
Animals , Dogs , Humans , Antigens, Viral , Allergy and Immunology , Cell Line , China , Epitopes , Allergy and Immunology , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus , Chemistry , Genetics , Allergy and Immunology , Metabolism , Influenza A Virus, H3N2 Subtype , Classification , Genetics , Allergy and Immunology , Mutation , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL